
Examples of Physics quantities visualization. 
 

P. Hruska 

Department of Physics, Faculty of Electrical Engineering and Communication 
Brno University of Technology 

 
Abstract 

Paper presents several examples of Physics quantities visualization in different fields of Physics: 
Kinematics, Wave motion, Quantum Mechanics and Molecular Physics. In those examples, there 
are the quantities definitions or relations, the visualization is based on. The M–scripts and M–
functions, or their relevant parts with basic comments are attached to each example. 
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Introduction 
 
Visualization of quantities and processes is an integral part of modern Physics teaching. Variety of 
computer programs have been used by the authors for this purpose. Matlab7, with its powerful 
graphics appears to be one of the most convenient tool to support this effort. Four selected examples of 
the quantities visualization are presented: visualization of tangent and normal acceleration of moving 
particle, superposition of wave pulses, the Heisenberg uncertainty relations and the Brownian motion. 
We tried to keep the complexity of Matlab functions at an introductory level. Hints, added for more 
examples compilations, could be motivating for lecturers to work out and use further Matlab 
visualization scripts and functions. 
 
1. Kinematics. Tangent and normal acceleration vectors of a moving particle  
 
 Motions, their classifications and comparisons, are the main kinematic topics. The basi , 
introductory quantities of particle-like objects, used in kinematics, are the position vector

c
r , 

instantaneous velocity v and instantaneous acceleration a . The quantities are vectorial functions of 
time t.  Curve = (t) is referred to as trajectory. Instantaneous velocity and instantaneous 
acceleration are first and second time derivatives of  

r r
r : ('instantaneous' in this connection will be 

omitted below.) 
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 Acceleration can be decomposed into tangent and normal components (  and ). The 

components are related to velocity changes: the change of magnitude of v
ta na

  ( v  = v) and the change 

of direction of v  ( = tu v / v,  being the unit tangent vector), resp. Vector tu v is always tangent to the 
trajectory. It holds 
 

t t
dva u
dt

=  (1.4)

n ta a a= −  (1.5)
 
 Visualization of vectorial quantities and investigation of their time evolution belong to 
frequent teaching tasks. Functions such as comet(x,y), comet3(x,y,z), or some other ways of adding 
arrows to graphs, offered by Matlab, are not fully suitable for the visualization of kinematic vectors. 
Therefore, we have compiled M-file functions sip(A,B) and sip2(A,B) to visualize the vectorial 



quantities as arrows. The functions are short and simple, compared to another Matlab function 
quiver(x,y,u,v), that is rather complex and suitable for very large vectorial fields. 
 
 The function sip(A,B) plots a vector B, with its starting point at point A, while [x y] = sip2(A,B) 
returns data to the arrow handle. M-function sip2(A,B)   is given below 
 
 
function [x y]=sip2(A,B); 
% Data for 2x5 ARROW matrix  
 
AB=[A;A+B]; 
x = AB(:,1);y = AB(:,2); 
dx = x(2) - x(1) + eps; 
dy = y(2) - y(1); 
b = norm([dx dy]); 
fi = atan(dy/dx); 
% appearence 
ahx = 0.061*b;awy = ahx/2; 
% arrowhead 
xt = [-ahx, 0,-ahx]* sign(dx); 
yt = [ awy/2, 0, -awy/2 ]; 
% rotation by fi 
roo = [cos(fi) -sin(fi); ... 
    sin(fi) cos(fi)]* [xt; yt]; 
xt = roo(1,:) + x(2); 
yt = roo(2,:) + y(2); 
x = [xt xt(2) x(1)]; 
y = [yt yt(2) y(1)]; % plot(x,y) 
 

 
Comments on [x y]=sip2(A,B) 
A = [a1 a2], B = [b1 b2] are 2D point/vector 
coordinates. Magnitude of vector B is denoted by 
b,  direction is given by angle fi, formed by the 
vector B and (+x) axis . The arrowhead segment is 
the hypotenuse of rectangular triangle of sides 
0.06*b and 0.03*b. The coordinates of head 
segments are initially xt, yt – two 3 × 1 matrices. 
The rotation of the arrow head through angle fi is 
done by  
 
matrix   [cos(fi)  -sin(fi); sin(fi)  cos(fi)]  
and matrix  [xt; yt]   
multiplication.  
 
The resultant arrow coordinates [x y] are the output 
parameters of function [x y] = sip2(A,B). Matrix [x 
y] of size 2 × 5 is a unique object, suitable for 
handle setting. Function sip(A,B) has no output 
parameters, but its last line is active: plot(x,y)  
 

 
 As an example of visualization, the motion of a particle along a trajectory with the 
characteristic acceleration vector , its tangent and normal components a ta  and are presented, 
Fig.1. Attached is the M-script hacc1.m, generating the visualization. Since the velocity vector v

na
 is 

always tangent to the trajectory, it is used for the vector ta  construction. 
 
 
% hacc1 
% Visualization of a moving particle  tangent (at)  
% and normal (an) acceleration vectors 
 
% -- Part 1 -------------------------------- 
syms t real; 
r=[2*sin(t)-t/5-4, 3*sin(t/1.5)+t/5-1];  
ezplot(r,[-0.5,5*pi]) % trajectory 
v=diff(r);a=diff(v); % basic definitions 
vv=sqrt(v(1)^2+v(2)^2); % velocity magnitude 
v0=v/vv;      % unit tangent vector    
atv=diff(vv); % definition of at magnitude 
at=atv*v0;    % vector at 
an=a-at;       % vector an 
 
 % -- Part 2 --------------------------------- 
t=0;R=subs(r);A=subs(a);At=subs(at);An=subs(an); 
[x y]=sip3([0 0],R); 
position=line('EraseMode','xor','Color', ... 
'r','XData',x,'YData',y); 
[x y]=sip3(R,A); 
acc=line('EraseMode','xor','Color', ... 
'm','LineWidth',2.5,'XData',x,'YData',y); 

 

 
Fig1. A particle moving along a given trajectory. 
Vectors of acceleration, tangent acceleration and 
normal acceleration are visualized at selected 
instants of time.  
Trajectory and times in Fig1:  
r=[2*sin(t)-t/5-4, 3*sin(t/1.5)+t/5-1];  0<t<5*pi 
t= [0.9:0.1:1.3 2.4:0.1:3.0 3.3*pi:0.1:3.5*pi] 
 



[x y]=sip3(R,At); 
acct=line('EraseMode','xor','Color', ... 
'b','LineWidth',2,'XData',x,'YData',y); 
[x y]=sip2(R,An); 
accn=line('EraseMode','xor','Color', ... 
'r','LineWidth',2,'XData',x,'YData',y); 
 
% -- Part 3 ---------------------------------- 
for t=0.1:0.1:5*pi  
R=subs(r);A=subs(a);At=subs(at);An=subs(an); 
[x y]=sip2([0 0],R); 
set(position,'XData',x,'YData',y); 
[x y]=sip2(R,A); 
set(acc,'XData',x,'YData',y); 
[x y]=sip2(R,At); 
set(acct,'XData',x,'YData',y); 
[x y]=sip2(R,An); 
set(accn,'XData',x,'YData',y); 
pause(0.1) % drawnow 
end 
 

Comments on hacc1.m 
 
Kinematic equations (definitions) - part 1 - are 
treated in terms of symbolic variables - t, r, v, v0, 
vv, a, atv, at, an.  
Function diff is symbolic time derivative. 
Graphic handles - position, acc, acct, accn  
- part 2 – are created at t = 0. Numeric vector 
components R, A, At, An, obtained by substitutions, 
serve as input parameters of M -function sip3 for 
arrow data [x y] evaluation.  
The actual visualization - Part 3 - is a standard 
EraseMode-xor animation, in which numeric data t 
are substituted into symbolic variables r , a , ta , 

na  and resultant numeric variables R, A, At, An are 
transformed into arrow graphic data, continually 
supplied to the object handles, erasing old and 
redrawing new values of the objects – arrows, 
representing the vectors. The command drawnow 
should be used, if pause(), slowing down the 
animation, is omitted. 

 
 
 In a very similar way, one can visualize Cartesian components of particle velocity, 
acceleration, components of force (being given mass of the particle). The procedure can be extended 
to body translations and rotations. 
 
 
2. Wave motion. Superposition of wave pulses 
 
The Wave Equation (WE) is a central differential equation describing a distinct phenomenon in 
Physics – Waves. The waves in elastic media are elastic (acoustic) waves. The displacement of a 
medium element from its equilibrium position is u(x, t), the phase velocity is c.  The WE reads (1D) 
 

2 2

2 2 2

1 0d u d u
dx c d t

− =  (2.1)

  
 Three kinds of waves are known in Physics: Electromagnetic waves ( and E B are varying 
electric and magnetic fields), probability or deBroglie's waves (symbol ψ) and elastic waves, 
mentioned above. Linearity is an important feature of the WE. It implies that a linear combination of 
arbitrary solutions of the WE is also a solution. It is well known Principle of Superposition.  Let us 
mention, that waves 
 

u=f(x ±  ct) (2.2)
 
f being arbitrary function, are solutions of (2.1). Take notice of the independent variables x, t mutual 
positions in the function f argument. 
  
 Two pulses y1, y2 are used in the coming example superpos2e.m. They travel along (x) axis at 
opposite velocities (± c). When they encounter each other in space, they superpose, without mutual 
affecting. They can be treated as one wave: y3=y1+y2. 



 
% superpos2e.m 
% Superposition of two pulses,  
% travelling in opposite directions 
 
% - Part 1 --------------------------------------- 
t=-20:.3:20; 
y1=exp(-(t-15+1/10).^2); 
y2=1/3*exp(-(t+15-1/10).^2/9); 
y3=y1+y2; 
figure1=figure; 
% -- subplot1:----------------------------------- 
axes1=axes('Position',... 
  [0.13 .7683 0.775 0.1567],'Parent',figure1); 
set(axes1,'XLim',[-16 16],'YLim',[-0.1 1.1]); 
plot1=plot(t,y1,'Parent',axes1);grid; 
set(plot1,'EraseMode','xor','Color',... 
   [0 0 1],'LineW',1.5); 
% -- subplot2:----------------------------------- 
axes2=axes('Position',... 
   [0.13 .5492 0.775 0.1567],'Parent',figure1); 
set(axes2,'XLim',[-16 16],'YLim',[-0.1 1.1]); 
plot2=plot(t,y2,'Parent',axes2);grid; 
set(plot2,'EraseMode','xor',... 
   'Color',[1 0 0],'LineW',1.5); 
% -- subplot3:----------------------------------- 
axes3=axes('Position',... 
   [0.13 .111 0.775 0.36],'Parent',figure1); 
set(axes3,'XLim',[-20,20],'YLim',[-0.1 2.1]); 
plot3=plot(t,y3,'Parent',axes3);grid; 
set(plot3,'EraseMode','xor',... 
   'Color','m','LineW',2.5); 
pause 
 
% -- Part 2 ---------------------------------------- 
for k=1:300  
  y1=exp(-(t-15+k/10).^2); 
set(axes1,'XLim',[-20 20],'YLim',[-0.1 1.1]); 
set(plot1,'XData',t,'YData',y1); 
  y2=1/3*exp(-(t+15-k/10).^2/9); 
set(axes2,'XLim',[-20 20],'YLim',[-0.1 1.1]); 
set(plot2,'XData',t,'YData',y2);  
  y3=y1+y2; 
set(axes3,'XLim',[-20 20],'YLim',[-0.1 2.1]); 
set(plot3,'XData',t,'YData',y3); 
drawnow           % pause(0.1) 
end 
 

 

 
Fig2. Superposition of two pulses, traveling in 
opposite directions at three instants of time.  
Pulses: 
y1=exp(-(t-15+k/10).^2); 
y2=1/3*exp(-(t+15-k/10).^2/9); k are parameters in 
seconds. 
 
Comments on superpos2e.m 
 
The shape of the pulses is chosen to be bell-like 
functions y1 and y2 in Part 1 for x =  ±14.9 m 
(phase velocity = 1m/s).  The shape of the pulses 
can be easily modified. The pulses move along 
horizontal axis. Ticks are in meters. 
 
The figure is divided into 3 subplots with handles:  
axes1, axes2 axes3.  
The plot handles are:     
plot1, plot2, plot3 
The superposition, as an implication of linearity of 
the Wave Equation, is indicated by adding up the 
two pulses. For the actual visualization, the 
EraseMode-xor animation is applied using the loop. 
Function data are supplied into subplots by setting 
the handles property 'YData'. 
The speed of animation can be controlled by 
inserting command pause(p), p in seconds. The 
first pause before the loop (next to Part 2) can be 
omitted on repeated script application. 
 

 
Using a similar approach, we can construct a series of wave visualizations, such as standing waves, 
superposition of plane waves of near frequency and near wavelength in order to visualize group and 
phase velocities, to mention few examples. 
 
3. Quantum Mechanics (QM). The Heisenberg relations of uncertainty. 
 
Uncertainty of the particle position ∆x and the corresponding uncertainty of momentum ∆p are related 
by  
 

∆x* ∆p  ≥  2π , (3.1) 
 



where =1.054 572 6 ×10-34 Js is the Planck constant. The expression on the right hand side of (1.3) 
depends on the definition of uncertainty. Inequality (1.3) is the Heisenberg relation of uncertainty for 
x-coordinate and px-component of a particle, a basic relation of Quantum mechanics. It states, that 
simultaneous unlimited accuracies of a particle position along (x) axis and x-component of momentum 
are fundamentally impossible. There are analogous relations for  (y, py), (z, pz) and (E, t). 
 
 The reason of validity (3.1) is not in the measuring instruments, it rises from the way we 
describe the particle position and momentum. Full information on a particle state is carried by its wave 
function ψ(x)  (de Broglie wave). The probability (probability density) of finding the particle is |ψ|2. 
The wave function of a free particle of momentum p = k is a monochromatic wave  
 

ψ(x) = exp(j p/ħ* x) (3.2) 
  
 
It is the asymptotic case of a wave function with accurate momentum and infinite inaccuracy of 
position.  
 
 The example is based on a property of the wave packet. 

Superposition of waves of varying wavelength – or momentum   p= ħ
2k π
λ

= ħ results in 

finite accuracy of position at the expense of momentum accuracy, as shown below. Almost arbitrary 
superposition can be easily done in MATLAB.  
  
 In this example, several wave packets were constructed by superposition of plane harmonic 
waves exp(jkx). The superposition was performed by integration throughout a chosen interval of 
wavenumbers k, denoted by ∆k.  
 

( ) ( )
0

0

/ 2

/ 2

exp
k k

k k

u x jkx dk
+∆

−∆

= ∫  (3.2)

 
Since some physical quantities, like intensity, energy and (here) probability of finding the particle, are 
related to the amplitude squared, we introduced another wave packet w=|u| ^ 2. To determine its 
width, equal to that of u, we chose the separation ∆x of the ends of the first maximum. The product of 
the two uncertainties  ∆x, ∆k is independent of either uncertainty, being equal to 2π. Up to this point of 
the example, no mention on QM was said. Having multiplied the latter relation by the Planck constant 

, one obtains equality of (3.1) .  
 

∆x * ∆κ = ∆x *∆p=∆x* ∆p  =  2π  
 
 Thus, we have entered QM. The meaning of ∆x is a space region, where probability density of 
finding the particle in question is very high, compared to its neighborhood, where it is negligible, 
while ∆p is the interval of momentum, that was utilized in the wave packet u or w creation. Therefore 
one has to accept that the particle under analysis should have more values of momentum –i.e. all the 
values within ∆p. 
  
  Four probability curves were generated, each by integrating a monochromatic wave ψ = 
exp(jkx) within a specified interval of wavelengths. Corresponding intervals ∆p are: 2 , 6 , 14 , 
and 80 . Brief comparison of the curves width yields for each curve a relation ∆x* ∆p  = 2 πħ.  The 
curves are displayed in Fig.3. 
 
 Thus, it clarifies in a natural manner the essence of the Heisenberg relations. 
 



  
∆p=2 , ∆x=3.1415933 ∆p=6 , ∆x= 1.0471944 

  
∆p=14 , ∆x=0.44879785 ∆p=80 , ∆x= 0.078555641 

 
Fig. 3. Wave packets created by superposition of monochromatic waves. Relation between the packets 
width and the interval ∆p is the basis of the Heisenberg relations of uncertainty.  
 
 
 
% h1exp 
% packet generation by superposition  
% of plane waves from range ∆k=(-k, k), and 
% packet width ∆x evaluation. Product  ∆x*∆k =2*pi, 
% i.e. is  INDEPENDENT of both ∆k, ∆x 
digits(10) 
syms k x real 
psi=exp(j*k*x); 
aa=1.2;me=10; 
disp(['  ∆x' '              ∆k' '            ∆x*∆k']); 
for m=1:me 
 
% -- Part 1 --------------------------- 
u=int(psi,k,100-aa^m,100+aa^m); 
w=abs(u)^2; 
 
% -- Part 2 --------------------------- 
h{m}=@(x) eval(w);% wave packet handles 
d(m)=fminbnd(h{m},0,(pi+.5)/aa^m); 
 
% -- Part 3 --------------------------- 
figure(m),fplot(h{m},[-4,4]);%graphing 
disp([vpa(d(m)) vpa(2*aa^m) vpa(2*d(m)*aa^m)]) 
end; 
 

Results of h1exp.m evaluation: 
 ∆x                     ∆k                    ∆x*∆k   
[ 2.617986140,  2.400000000,  6.283166736] 
[ 2.181655117,  2.880000000,  6.283166736] 
[ 1.818045931,  3.456000000,  6.283166736] 
[ 1.515038275,  4.147200000,  6.283166736] 
[ 1.262531896,  4.976640000,  6.283166736] 
[ 1.052109914,  5.971968000,  6.283166736] 
[ .8767582613,  7.166361600,  6.283166736] 
[ .7306318844,  8.599633920,  6.283166736] 
[ .6088599037,  10.31956070,  6.283166736] 
[ .5073832530,  12.38347284,  6.283166736] 
 
∆p =  ħ * ∆k 
Replacement of ∆k by ∆p yields equality in (3.1), 
i.e. the Heisenberg relation  
 
Comments on h1exp.m 
Integration (Part 1) of plane harmonic waves 
within the interval ∆k =100-aa^m,100+aa^m 
represents a wave superposition, creating a wave 
packets u and w=u^2 of equal width.  The packet 
width d determination (Part 2) is performed by 
function fminbnd(), which requests the handle of 
function w as its parameter. The handle is created 
a line earlier and used also for plotting (Part 3). 
Variable Precision Arithmetic function, vpa 
enables to display results to 10 (digits(10)) 
significant figures. 

 
 



 
4. Molecular Physics. Brownian motion 
 
A very small macroscopic particle immersed in a liquid or a gas exhibits a random type of motion, 
called Brownian motion. It reveals very clearly the statistical fluctuations in a system in thermal 
equilibrium. A variety of important situations are basically similar: random motion of the mirror 
mounted on the suspension fiber of a sensitive galvanometer, or the fluctuating current in an electric 
resistor. Surprisingly, the source of damping in the motion, is also the source of fluctuations [2, 3, 4]. 
Particles of pollen dust (one to two micrometers long) immersed in water at temperature T have their 
mean square energy 3/2kT, the same as the individual molecules of water have. Thus, the pollen 
particles move at mean-square speed vp 
 

w
p w

p

mv v
m

=  
 

(4.1)

  
where vw , mw , mp are mean-square speed of the molecule of water, its mass and the mass of the pollen 
particle, resp. In the theory of Brownian motion one applies numerous statistical quantities, that can be 
visualized in graphs, offered by M-function brownian5(N), where N is a number of particles. This 
function offers graph of the distance r of a particle from its initial position and its mean square 
displacement as functions of time at the end of motion simulation. Other statistical quantities of 
interest can be included into the M-function and visualized.  
 
 The idea of Brownian motion visualization is an animation of a set of N particles, located at 
r = [x , y], see help, animation[1]. Their locations vary as r=r+s*randn(r) . Fixed time period s 
multiplied by random velocity yields a particle displacement. It corresponds the case of taking photos 
at a fixed rate s (seconds) of particles observed by microscope.  
 
 
function brownian5(N) 
% Simulation of Brownian motion of N particles  
% Distance traveled by the 'red' particle 
% Parameters of the 'red' particle  are recorded 
% M-function sip3.m to be on path 
fg1=figure(1); 
 
% -- Part 1 -----------------------------------------------. 
axes1 = axes('Position',.. 
    [0.13 0.11 0.60862 0.815],'Parent',fg1); 
s=0.02; % particle position sampling time 
x=rand(n,1)-.5;y=rand(n,1)-.5; 
h1=plot(x,y,'.'); x1=[0];y1=[0]; 
hold on 
hh=plot(x1,y1,'ro'); 
hold off 
title('Brownian motion');axis([-2 2 -2 2]) 
xlabel('x'),ylabel('y') 
rectangle('Position', [-.5 -.5 1 1]) 
set(h1,'EraseMode','xor','MarkerSize',12) 
set(hh,'EraseMode','xor','MarkerSize',4) 
hs=line('EraseMode','xor','Color', ... 
'r','LineWidth',0.6,'XData',x1,'YData',y1); 
 
.% -- Part 2------------------------------------------------ 
axes2 = axes('Position',    
 [0.8508 0.11 0.04419 0.815],'Parent',fg1); 
xs=1:2;ys=ones(1,2)*sqrt(x1^2+y1^2); 
h2=area(xs,ys);title('|R|'); 
set(h2,'FaceColor','flat'); 
axis([1 2 -0.001 1.21]); 

 
Comments on Brownian5(N) 
figure(1) is divided in two subplots with handles 
axes1 and axes2 
 
    Positions of N particles are set up in Part 1 by 
rand(N,1) function within a square of side 1 and 
centre at origin. Handle of particles positions is: 
h1. The handle of selected particle, located 
initially at origin is hh, the handle of its pointer is 
hs.  
 
    The handles are set to EraseMode-xor mode 
for animation. Instantaneous distance of the 
selected particle from the origin is indicated by 
the bar height in subplot 2, Part 2. 
 
    Animation starts in Part 3, where the technique 
try-catch-end is used. On the figure(1) closing,  
the program jumps into catch part – Part 4, with 
creating figure(2) and ending up. 
 
    During the Brownian motion visualization the 
particles new positions are continuously 
generated: (x, y), and (x1, y1), resp. The 
coordinates of generated displacements are of the 
form fixed time tau × randn velocity. Function 
sip2, described above, is used to visualize the 
selected particle. The values of its instantaneous 



set(axes2,'XTickLabel','') 
m=1;Rs=0; tau=0.2; 
 
while 1 % -- Part 3----------------------------------------- 
    try 
x=x+s*randn(n,1); y=y+s*randn(n,1); 
x1=x1+s*randn(1,1);y1=y1+s*randn(1,1); 
[x2 y2]=sip2([-0.5 -0.5],[0.5+x1 0.5+y1]);  
set(h1,'XData',x,'YData',y); 
set(hh,'XData',x1,'YData',y1); 
set(hs,'XData',x2,'YData',y2); 
R=x1^2+y1^2; Rs=Rs+R;  
r(m)=sqrt(R); rs(m)=sqrt(Rs);  
ys=ones(1,2)*r(m); 
set(h2,'Ydata',ys); 
m=m+1;pause(tau); 
     
    catch % -- Part 4 --------------------------------------- 
        figure(2) 
        plotyy(r,'-r.',rs,'-b.'),xlabel('time') 
        title(['Particle distance r (red) '...  
            'and mean squre distance rs (blue)'])  
    break 
   end 
end 
 
 

displacement from the origin is recorded  as  
 
r (m) = sqrt(R), 
 
 
R= x1^2+y1^2 
 

 
(4.2)

 
where x1, y1, are instantaneous x and y 
components of the selected particle, and its 
mean-square displacement as 
   
rs(m) = sqrt(R1+R2+…+Rf) 
 
where the sum in the sqrt argument is a 
cumulative sum of values R as in (4.2). 
 
    Time dependence of  r, rs  is plotted in 
figure(2), using two-axis command  
 
plotyy 

 
 The Brownian motion is shown in the main graph, while the actual distance of a selected 
particle from its initial position (origin) is visualized by a bar height in the right-hand side graph. At 
any time the visualization can be interrupted and time evolution of the quantities recorded during the 
animation be shown. An arrow is supplied to point to the selected particle.  
 
 

  
a) Particle distribution after 32  time units. Bar 
measures the distance of selected particle from 
origin. 

b) Time evolution of instantaneous distance from 
origin and mean-square distance through 32  time 
units. 



  
a) Particle distribution after 256 time units. Bar 
measures distance of selected particle from origin 

b) Instantaneous distance from origin and mean-
square distance through 256 time units. 

  
a) Particle distribution after 2048  time units. Bar 
measures distance of selected particle from origin 

b) Instantaneous distance from origin and mean-
square distance through 2048  time units. 

  
Fig. 4. Brownian motion visualization. Time evolution of statistical quantities of the selected particle 
 
Conclusions 
 
Examples of Physical quantities visualization by static graphs and animations using Matlab 7 are 
presented. M-functions and M-scripts. with comments are supplied. It is believed, they could facilitate  
certain parts of Physics teaching.  
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