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Abstract

One of useful and popular local operations in local processing of 2D image is
image de-noising with two contradictory aims: decreasing of the noise level and
saving the structure of the original image. The signal to noise ratio (SNR) will
increase in this case. Various types of ANN as OLAM, MLP, RBF can be used
directly as a kind of sophisticated nonlinear filter on local pixel neighborhood
(3x3), which is a little bit naive in general. Every intensity value from pixel
neighborhood is passed to the adequate input neuron and the de-noised value
is available on the single output of given ANN. Our article is oriented to more
sophisticated local preprocessing which increases both the number of hidden
layers of the hierarchical de-noising system and the learning abilities and the
robustness of the proposed system.

1 Image Processing Preliminaries

Let nR, nC ∈ N be a number of rows and columns. Let i ∈ {1, . . . , nR}, j ∈ {1, . . . , nC} be
indices of given pixel pi,j of intensity xi,j ∈ [0; 1]. Then the gray 2D image is represented
by the matrix X ∈ [0; 1]nR×nC . Let r ∈ N be a neighborhood size. Then the neighborhood of
the pixel pi,j is defined as

N r
i,j = {pk,l | |k − i| ≤ r ∧ |l − j| ≤ r}

and represented by the intensity values

Ir
i,j = (xk,l | |k − i| ≤ r ∧ |l − j| ≤ r)

where
1 + r ≤ i ≤ nR − r

1 + r ≤ j ≤ nC − r.

So, the list Ir
i,j consists of n = (2r + 1)2 values and can be also represented as the vector

x = (x1, . . . , xn) ∈ [0; 1]n.

Let yi,j ∈ [0; 1] be a de-noised value of xi,j . The local de-noising is then represented by
the mapping

yi,j = f(Ir
i,j) = f(x)

with the optimality condition

SSQ =
∑

i,j

(y∗i,j − yi,j)2 = min

where y∗i,j ∈ [0; 1] is given pixel intensity of an ideal image. In the special case of r = 1
the neighborhood consists of n = 9 pixels. The values of the pixel intensity are depicted
on Figs 1 and 2.

Figure 1: I1
i,j structure Figure 2: Vector notation of I1

i,j



From the traditional point of view, there are simple de-noising filters represented by

f(x) = mean(x1, . . . , x9)
f(x) = mean(x2, x4, x5, x6, x8)
f(x) = median(x1, . . . , x9)
f(x) = median(x2, x4, x5, x6, x8)

f(x) =
x5

4
+

x2 + x4 + x6 + x8

8
+

x1 + x3 + x7 + x9

16

and many other functions.

The second extreme approach based on the artificial neural networks is represented by
general formula f(x) = ANN(x,w) where x ∈ Rn, w ∈ Rq, q ∈ N is the number of weights
of given ANN. The basic research in the area of image de-noising methods was performed over
decades. That is why the direct learning of general ANN can hardly bring better results than
the traditional de-noising. But the traditional principles can be used for both sophisticated
preprocessing and postprocessing.

2 Statistical Preliminaries

The statistical sample of n values can be represented by various lists. Let L = (x1, . . . , xn) be
a list of input values. Let O = (x(1), . . . , x(n)) consist of all values from the list L. When
x(1) ≤ x(2) ≤ . . . ≤ x(n), then O is called an ordered list of the values from L. We can also
define Walsh list of n(n + 1)/2 values, which is generated from L by formula

W = (
xi + xj

2
| 1 ≤ i ≤ j ≤ n).

It is also useful to order the values from W = (ξ1, . . . , ξn(n+1)/2) to the ordered Walsh list
W∗ = (ξ(1), . . . , ξ(n(n+1)/2)).

Let k ∈ N0, P = bn+1
2 c, Q = dn+1

2 e, R = bn
4 c, S = n−k

2 , T = n−k−1
2 ∈ N. Then we can

define useful functions for the processing of list L:

• AVGk(L) = 1
k

∑k
j=1 x(S+j)

• MEDk(L) = 1
2(x(P−k) + x(Q+k)), k < P

• BINk(L) = 1
2k

∑k
j=0

(
k
j

)
xT+j

• BES(L) = 1
2(MED0(L) + MEDR(L))

• Q1(L) = xP−R

• Q3(L) = xQ+R

• L(L, w) =
∑n

k=1 wkx(k)

• FIR(L, w) =
∑n

k=1 wkxk

• HL(L) = MED0(W)

• WBINk(L) = BINk(W)

• WBES(L) = BES(W)

• WQ1(L) = Q1(W)



• WQ3(L) = Q3(W)

• WL(L, w) = L(W, w)

Here FIR represents general linear function, L represents general L-estimate (AVG, MED,
BIN, BES, Q1, Q3 are special cases). Then, AVGk is trimmed average, MED0 is median, MEDk

is quasi-median for k > 0, BINk is binomial L-estimate, BES is Turkey’s best easy estimate, Q1

is the first quartile, Q3 is the third quartile, HL is Hodges-Lehman median and WBIN, WBES,
WQ1, WQ3, WL are previous estimates applied to Walsh list. Except of the FIR function,
the other statistical estimates are robust. It means, they have a small or zero sensitivity to
extreme values x1, xn. When we use the robust estimates as a kernel of ANN preprocessing and
postprocessing, the de-noising system will be robust, too.

3 Robust Local De-noising

Let yi,j = f(x1, . . . , xn) be local de-noising function. The local de-noising is called k-robust
when f satisfies the condition x(1+k) ≤ f(x) = ϕ(x(1+k), . . . , x(n−k)) ≤ x(n−k) for all x ∈ [0; 1]n.
It means the values of xi 6∈ [x(1+k); x(n−k)] are not used in the de-noising procedure and the
de-noised value is also constrained. So, the main role of preprocessing is in eliminating the
extreme input values while the output of ANN is mapped into interval [x(1+k); x(n−k)]. The
general scheme of robust local de-noising is depicted on the Fig 3, where x(1+k) ≤ xLOW ≤
xMID ≤ xUPP ≤ x(n−k).

Figure 3: Robust local de-noising

3.1 Robust preprocessing

Let n = (2r + 1)2 be neighborhood size. Let k ∈ N, k < n−1
2 be order of robustness. Let

cut(α) = min(1, max(0, α)). Let xLOW, xMID, xUPP satisfy x(1+k) ≤ xLOW ≤ xMID ≤ xUPP ≤
x(n−k).

Preprocessing ΦA : [0; 1]n → [−1; 1]n is defined by the formulas

xPRE = ΦA(x)

xPRE,i = 2 cut
(

xi − xLOW

xUPP − xLOW

)
− 1, for xUPP > xLOW

xPRE,i = 0, for xUPP = xLOW

where i = 1, . . . , n.

Preprocessing ΦB : [0; 1]n → [−1; 1]n is defined by the formulas

xPRE = ΦB(x)

ai = cut
(

xi − xMID

xUPP − xMID

)
, for xUPP > xMID

ai = 0 , for xUPP = xMID



bi = cut
(

xi − xMID

xLOW − xMID

)
, for xLOW < xMID

bi = 0 , for xLOW = xMID

xPRE,i = ai − bi

for i = 1, . . . , n.

Preprocessing ΦC : [0; 1]n → [0; 1]n−2k is defined by the formulas

xPRE = ΦC(x)
xPRE,i = x(i+k)

for i = 1, . . . , n− 2k.

Preprocessing strategies can be applied to Walsh list W(x) to obtain another preprocessing

ΦD(x) = ΦA(W(x))
ΦE(x) = ΦB(W(x))
ΦF(x) = ΦC(W(x)).

It is clear, that ΦA, ΦB, ΦC do not use the values x(1), . . . , x(k) and x(n−k), . . . , x(n) and the
preprocessing are k-robust.

Walsh list W(x) consists of n∗ = n(n+1)/2 elements. The original value x(1) has influence
on n values from W(x) and x(k) influences k∗ = k(2n − k + 1)/2 values from Walsh list. So,
we use only the values ξ(1 + k∗), . . . , ξ(n∗ − k∗) from W(x) to be sure in k-robustness of Walsh
preprocessing. The preprocessing with or without Walsh list is reasonable when at least two
(potentially different) values are passed. In case of Walsh list we must accept the condition

1 + k∗ < n∗ − k∗

which is equivalent to k∗ < (n∗ − 1)/2. After the substitution we obtain

k(2n− k + 1)
2

<

(
n(n + 1)

2
− 1

)
/2

and the explicit constrain

k <
2n + 1−√2n2 + 2n + 5

2
≤ n− 1

2
.

In case of Walsh list absence we have a simpler and wider condition 1 + k < n− k which
has the explicit form k < (n− 1)/2. Thus, the maximum robustness of Walsh preprocessing is

kWALSH =

⌈
2n− 1−√2n2 + 2n + 5

2

⌉

while the maximum robustness without Walsh list is

kMAX =
⌈
n− 3

2

⌉
.

Then any preprocessing which begins with ΦA, . . . , ΦF and continue with xPRE instead of
x is k-robust with the zero sensitivity to the outliers.



3.2 ANN processing

Let nPRE > 1 be the number of the preprocessing output. Let xPRE ∈ [−1;+1]nPRE be the
preprocessing output defined as xPRE = F(Φ(x)) where Φ is one of k-robust preprocessing.
The signal xPRE is incoming to the input of ANN which is supported to realize mapping

ANN : [−1;+1]nPRE → [−1; +1]

without the output value yANN = ANN(xPRE).

There are many possibilities how to design the neural network with one output: an op-
timum linear neuron (OLAM), a constrained linear neuron, a sigmoidal neuron, a multilayer
perceptron (MLP) or a network with radial basis (RBF).

3.2.1 OLAM processing

In case of preprocessing xPRE = ΦC(x) or xPRE = ΦF(x) we can use an optimum linear neuron
with zero bias to obtain

yANN =
nPRE∑

j=1

wjxPRE,j

with weights constrains
∑nPRE

j=1 wj = 1, w ∈ [0; 1]nPRE . Having xPRE,j ∈ [x(1+k);x(n−k)], the
condition yANN ∈ [x(1+k);x(n−k)] holds and no other robust processing is necessary.

3.2.2 Constrained linear neuron

We can use any preprocessing together with any linear neuron. But the normalization is neces-
sary. The cut function helps us to perform a constrained linear neuron as

yANN = 2 cut(w0 +
nPRE∑

j=1

wjxPRE,j)− 1

where w ∈ RnPRE+1.

3.2.3 Sigmoidal neuron

The traditional bipolar smooth model of neuron is described as

yANN = tanh(w0 +
nI∑

j=1

wjxPRE,j)

where w ∈ RnI+1. The effect of other sigmoidal characteristics was not studied here.

3.2.4 Multilayer perceptron (MLP)

The existence of a single hidden layer within an artificial neural network improves the ap-
proximation power of ANN. Let H ≥ 2 be number of hidden neurons with a hidden vector
h = (h1, . . . , hH) ∈ (−1;+1)H . Then MLP is described by the formulas

yANN = tanh(v0 +
H∑

i=1

vihi)

hi = tanh(wi,0 +
nPRE∑

j=1

wi,jxPRE,j)

where i = 1, . . . , H, v ∈ RH+1, W ∈ RH×(nPRE+1).



3.2.5 Constrained RBF network

Another well known model of hierarchical processing is called radial basis function (RBF) net-
work. It also contains single hidden layer of size H ≥ 2 with hidden vector h = (h1, . . . , hH) ∈
(0; 1]H . The RBF network is described by formulas

yANN = 2 cut(v0 +
H∑

i=1

vihi)− 1

hi = exp


− 1

2σ2
i

nPRE∑

j=1

(xPRE,j − wi,j)2



where i = 1, . . . , H, v ∈ RH+1, σ ∈ RH
+ , W ∈ RH×nPRE .

3.2.6 ANN learning

The vectors w, v, σ and the matrix W are unknown and can be subject of estimation, learning
or optimization. Let m ∈ N be a number of patterns. The ith pattern is a pair (xPRE,i , y∗ANN,i)
for i = 1, . . . , m. Here the vector xPRE,i is obtained via preprocessing from the neighborhood of
ith pixel taken at random from noised 2D gray image. The value y∗ANN,i ∈ [−1;+1] represents
given output of ANN for ith pixel of an ideal image. There is a relationship between y∗ANN,i

and y∗IDEAL,i which is done by a robust postprocessing. Here y∗IDEAL,i ∈ [0; 1] represents given
intensity of ith pixel from an ideal image. The patterns form a pattern set

P = {(xPRE,i , y∗ANN,i) | i = 1, . . . , m}.

In case of a general artificial neural network we have yANN = ANN(xPRE) and the method
of least squares can be used for the optimization of w, v, σ, W. The objective function for
minimization is then

SSQ =
m∑

i=1

(y∗ANN,i −ANN(xPRE,i))2

There are many gradient, stochastic gradient, conjugate gradient, variable metric and other
methods for finding the local optimum values of ANN weights. (See [...,...,...]).

3.3 Robust postprocessing

The last step of local k-robust image de-noising realizes the mapping y = Ψ(yANN) satisfying
y ∈ [xLOW; yUPP] for all yANN ∈ [−1;+1] where x(1+k) ≤ xLOW ≤ xMID ≤ xUPP ≤ x(n−k). The
mapping Ψ is called robust postprocessing. Now we can define three basic postprocessing.

Postprocessing ΨA is defined by the formulas

y = ΨA(yANN)

y = xLOW +
yANN + 1

2
(xUPP − xLOW)

Postprocessing ΨB is defined by the formulas

y = ΨB(yANN)

y = xMID + max(0, yANN)(xUPP − xMID) + min(0, yANN)(xMID − xLOW)



Postprocessing ΨC is defined by the formulas

y = ΨC(yANN)

y = min(xUPP, max(xLOW, yANN))

Now we are prepared to build up any k-robust local image de-noising from the robust
preprocessing, ANN inside and the robust postprocessing. The last question is how to obtain
given value y∗ANN for ANN learning. It can be obtained from y∗ which is given value of a
pixel intensity from an ideal image. Except of the outlier values of y∗, the inversion Ψ−1 of the
postprocessing function Ψ is necessary. When y∗ > xUPP then y∗ANN = 1. When y∗ < xLOW then
y∗ANN = −1. When xUPP = xLOW then y∗ANN = 0. In the last case, when y∗ ∈ (xLOW; xUPP),
the inversions provide adequate results.

For ΨA we obtain

y∗ANN = Ψ−1
A (y∗) = 2

y∗ − xLOW

xUPP − xLOW
− 1.

After the inversion of ΨB we obtain three results. When y∗ ∈ (xMID;xUPP) then

y∗ANN = Ψ−1
B (y∗) =

y∗ − xMID

xUPP − xLOW
.

When y∗ ∈ (xLOW;xMID) then

y∗ANN = Ψ−1
B (y)∗ = − y∗ − xMID

xLOW − xMID
.

When y∗ = xMID then
y∗ANN = Ψ−1

B (y∗) = 0.

The inversion of ΨC is trivial as y∗ANN = Ψ−1
C (y∗) = y∗.

If you compare the preprocessing ΦA and inverse postprocessing Φ−1
A , you can recognize

their similarity. When we apply cut form of Φ−1
A to every element of vector x, the mapping ΦA

is obtained.

4 De-noising Strategies

The real implementation of k-robust consists of selected preprocessing, ANN and postprocessing.
The de-noising strategy begins with the selection of the neighborhood size r and the robustness
order k. We recommend r = 1, k ∈ {1; 2} for the first experiments. Thus n = 9, n∗ = 45, k∗ ∈
{9; 17} and then 1-robust and 2-robust de-noising system can be constructed with or without
Walsh list, and with OLAM, MLP or RBF ANN inside. There are three main strategies of
selection xLOW, xMID, xUPP.

4.1 Referential filter in basic frame

Having our favorite de-noising filter y = fREF(x), we can call it the referential filter. The
frame is derived from the order of robustness and then the referential filter in frame brings
the constrains

xLOW = x(1+k),

xUPP = x(n−k),

xMID = min(xUPP, max(xLOW, fREF(x)))

where k < (n− 1)/2.



4.2 Referential filter in Walsh frame

We can constrain the referential filter according to Walsh list W(x) to obtain another formulas

xLOW = ξ(1+k∗),

xUPP = ξ(n∗−k∗),

xMID = min(xUPP,max(xLOW, fREF(x)))

where n∗ = n(n + 1)/2, k∗ = k(2n− k + 1)/2, k∗ < (n∗ − 1)/2.

4.3 Co-referential frame

Let fREF be any referential filter. Let nCR ∈ N be number of co-referential filters. Let fCRi

be ith co-referential k-robust local de-noising filter for i = 1, . . . , nCR. Then the co-referential
frame is defined as

xLOW = min
i=1,...,nCR

(fCRi(x))

xUPP = max(fCRi(x))

xMID = min(xUPP,max(xLOW, fREF(x)))

This approach brings a very sophisticated tool for the image de-noising.

5 Experimental Part

The MRI T2 2D slice of human brain was used for the testing of 1-robust and 2-robust ANN
filters. The original image has size 512x512 pixels. The sub-images of size 70x70 pixels were cut
out for the learning and verification. The Gaussian noise was added to obtain sources for ANN
learning. The original image is depicted on the figure 4. The figures 5 and 6 demonstrate two
versions of noised 2D image. The referential filter fREF was set to be median (MED0(L)). Five
co-referential filters were used: BES (BES(L)), quasimedian (MED1(L)), median of Walsh list
(MED0(W)), quasimedian of Walsh list (MED1(W)) and BES of Walsh list (BES(W)). The set
of co-referential filters satisfies the condition of 1-robustness. The robust preprocessing schemes
ΦA,ΦB were conquered with adequate postprocessing ΨA,ΨB for robustness indict k=1 and
k=2. The influence of ANN type was studied for OLAM, MLP and RBF networks. The effect
of Walsh preprocessing and co-referential filtering was also measured. The quality of de-noising
was measured via SNR of ANN enhanced 2D image. The difference between any k-robust filter
and referential filter is denoted here as ∆SNR = SNR − SNRfREF

. The weights of ANN was
learned on learning frame of original image (Fig4). The results of verification are demonstrated
in Tables 1, 2. Table 1 consists of results for 1st frame within 1st noised image (Fig5) while table
2 collects the results for 2nd frame within 2nd noised image (Fig6). The quality of de-noising
is also evaluated for the referential median filter, which is 4-robust and also for co-referential
filters which are 1-robust at least. The results of verification on the whole set of six frames can
be generalized to several rules of application:

• increasing of k-robustness while decrease SNR of optimum system

• preprocessing ΦA with postprocessing ΨA is better than ΦB with ΨB in the majority of
cases

• MLP network is better than OLAM and RBF in the majority of cases

• co-referential frame is better than the worst individual co-referential filter

• Walsh frame is better than co-referential frame



• basic frame is better than co-referential frame

• basic frame and Walsh frame are very close in SNR

6 Conclusions

The k-robust de-noising filter with ANN inside were defined first and then realized for k ∈
{1; 2}. The main recommendation from experimental testing on MR image of human brain with
Gaussian noise are: use basic or Walsh frame for k=1,ΦA preprocessing, MLP network and
ΨA postprocessing to obtain good ∆SNR values. In the case of higher probability of impulse
noise, the value k=2 is necessary. The traditional median of nine values is reserved only for the
extreme case.
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Figure 4: Original image



k=1 k=2
filter SNR ∆ SNR SNR ∆ SNR
NOISED 8.2982 – – –
fREF - median 12.1031 0 – –
OLAM with ΦA 13.7043 1.6012 13.5234 1.4203
OLAM with ΦB 13.4160 1.3129 13.2187 1.1156
MLP with ΦA 13.9269 1.8238 13.7313 1.6282
MLP with ΦB 13.5703 1.4672 13.3683 1.2652
RBF with ΦA 13.7830 1.6799 13.6203 1.5172
RBF with ΦB 13.6207 1.5176 13.3052 1.2021
OLAM with ΦA and Walsh list 13.7255 1.6224 12.9406 0.8375
OLAM with ΦB and Walsh list 13.5976 1.4945 12.8924 0.7893
MLP with ΦA and Walsh list 13.9243 1.8212 13.2182 1.1151
MLP with ΦB and Walsh list 13.6974 1.5943 13.0829 0.9798
RBF with ΦA and Walsh list 13.7049 1.6018 13.1672 1.0641
RBF with ΦB and Walsh list 13.6952 1.5921 13.1588 1.0557
fCR1 (BES) 12.2676 0.1645 – –
fCR2 (quasimedian) 12.8443 0.7399 – –
fCR3 (median Walsh) 11.5736 -0.5295 – –
fCR4 (quasimedian Walsh) 12.3779 0.2748 – –
fCR5 (BES Walsh) 12.2635 0.1604 – –
COREF OLAM with ΦA 12.7708 0.6677 – –
COREF OLAM with ΦB 12.5636 0.4605 – –
COREF MLP with ΦA 12.7510 0.6479 – –
COREF MLP with ΦB 12.5702 0.4671 – –
COREF RBF with ΦA 12.6892 0.5861 – –
COREF RBF with ΦB 12.6230 0.5199 – –

Table 1: Filter properties (Fig. 5, Frame 1)



k=1 k=2
filter SNR ∆ SNR SNR ∆ SNR
NOISED 8.2982 – – –
fREF - median 9.5856 0 – –
OLAM with ΦA 11.0099 1.4243 10.6751 1.0895
OLAM with ΦB 10.8239 1.2383 10.5512 0.9656
MLP with ΦA 11.0925 1.5069 10.6882 1.1026
MLP with ΦB 10.6032 1.0176 10.5355 0.9499
RBF with ΦA 10.6220 1.0364 10.5903 1.0047
RBF with ΦB 10.5018 0.9162 10.5428 0.9572
OLAM with ΦA and Walsh list 10.7252 1.1396 10.1118 0.5262
OLAM with ΦB and Walsh list 10.6792 1.0936 10.1019 0.5163
MLP with ΦA and Walsh list 10.6704 1.0848 10.1076 0.5220
MLP with ΦB and Walsh list 10.1567 1.5711 10.1188 0.5332
RBF with ΦA and Walsh list 10.2012 1.6156 10.1956 0.6100
RBF with ΦB and Walsh list 10.1835 1.5979 10.1574 0.5718
fCR1 (BES) 9.6230 0.0374 – –
fCR2 (quasimedian) 9.6012 0.0156 – –
fCR3 (median Walsh) 9.5989 0.0133 – –
fCR4 (quasimedian Walsh) 9.6401 0.0574 – –
fCR5 (BES Walsh) 9.6725 0.0869 – –
COREF OLAM with ΦA 9.7652 0.1796 – –
COREF OLAM with ΦB 9.7012 0.1156 – –
COREF MLP with ΦA 9.7545 0.1689 – –
COREF MLP with ΦB 9.7059 0.1203 – –
COREF RBF with ΦA 9.7324 0.1468 – –
COREF RBF with ΦB 9.7241 0.1385 – –

Table 2: Filter properties (Fig. 6, Frame 2)



Figure 5: First noised image Figure 6: Second noised image


