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Abstract

Human eye vision is oriented both to global scene, and to small details. We
are very sensitive to context information. The context is the difference between
intensities of image pixel and their neighborhood. So, the trivial way to context
extraction is based on linear high-pass filtering of given 2D image. The negative
role of any pixel intensity noise is in extreme context information which is send
into human eyes. The main idea of this paper is based on converting the original
noised image into context domain, then nonlinear robust 2D filtering of context
information and finally the inversion of context information. Various robust
filters with various values of parameter w € (0,1) are compared using ASNR and
ASNR*. All the calculations were performed in the MATLAB environment.

1 Image Context

A context in image plays cardinal role in human vision. Local context means the difference
between neighbor pixels in the case of digital image processing. There are many approaches
and digital filters whose enable to extract local context information. LoG and DoG filters are
only two examples from the class of linear high-pass filters. Supposing that the resulting filter
belongs to the same class, we would like to construct contextual filter with the smallest possible
neighborhood.

The simple way of pure context making can be derived from the pixel and its side neigh-
borhoods Uj 5 = %.’L‘@j - % (xi,ﬂ_l +Tij—1+ Tit1,5 + xi_l,j). Using 2D Fourier transform (FFT)
we obtain

(wl,(UQ) (W1,Q)2)X(Q)1,WQ)

with transform function F(wy,ws) = % — 1(coswi +coswy) € [0,1]. However, the context making
function C is not invertible because of F(0,0) = 0. But we can use a kind of pseudoinversion:

1/F(wy,ws) for w? + w2 >0
+ _ ) 1 2 )
F¥ (w1, wp) = { 0 for w1 = wy = 0.

This approach can be called pure context making and it has two disadvantages: high sensitivity
to noise and shifting of average image intensity in the case of context inversion. So, it is
necessary to develop a compromise between the pure context and original image with parameter
w € (0,1) and invertible transfer function F(wy,ws) =1 — % (1 + S(cosw; + cosws)). Now we
have 1 —w < F(wy,w2) < 1 and the problems with transfer inversion are eliminated. The sensi-
tivity to context inversion is then (1 — w)~!. There are two special cases:

e w — 07 for original instead of context,

e w — 1~ for pure context.

The best results of context denoising are obtained for the range w € [0.3,0.5]. Thus, the value
w = 0.4 is a kind of compromise one. The properties of compromise image are demonstrated in
the Figs. 1-3, where the original image is compared with its pure and compromise contexts.



2 Context denoising

The operations of the context making and context inversion will help us to develop a new kind
of nonlinear filter. The new filter will make context denoising instead of the original image
denoising. Let X, U, V.Y € R™*" be matrices of original 2D image, its 2D context, denoised
2D context, and denoised 2D image where m,n € N are image sizes. Let C,R : R™*" — Rm*"
be context making and robust filtering functions where C is invertible. The general scheme of
robust filtering in complex domain can be described as three step algorithm:

U=C(X), V=R(U), Y=C V)
or as composed denoising formula
Y = G (R(C(X))).

The meaning of the image denoising is depicted in the Figs. 1, 4 for the special case of WBES
nonlinear robust filter. The meaning of the context denoising is depicted in the Figs. 3, 5 for
WBES filter with w = 0.4. The denoised context image was then converted via context inversion
to resulting image with denoised context as shown in the Fig. 6. If we compare the Figs. 4 and 6,
we can recognize the softness of robust filtering in context domain. There is an analogy between
traditional SOS (Save Our Souls) and this new SOE (Save Our Eyes) approaches.

3 Nonlinear filtering

The nonlinear robust filtering can be based on L, M, R-statistical estimates. L-estimates are
based on statistical sample sorting and linear combination of sorted values. Median, quasime-
dian, pivot halfsum, BES and trimmed average are traditional examples. Complete average is
also L-estimate but it is linear and non-robust. M-estimates are based on maximization of sta-
tistical likelihood for various models. Median, Tukey biweight, Huber and average are examples
of M-estimates. Very sophisticated R-estimates are derived from rank based statistical tests.
Hodges-Lehmann median with Walsh list inside is a good example of R-estimate.

Let n € N and (z1,29,...,2,) be a list. Then the Walsh list is defined as list which

contains each element (HT%) such that 7 < j.

The median of Walsh list is called Hodges-Lehmann median.

Let Z = (z1,%2,...,2,) be alist (n € N). Then the best easy systematic estimation (BES)
is defined as

. 1
BES(#) = 3+ (w(r1) + 2 2g1)) + (gt + Ty )
WBES is defined as BES estimation of Walsh list.

There are also relationships among filtering approaches. The robustness increases in five
series:

e average, trimmed average, median;
e pivot halfsum, quasimedian, median;
e average, Huber, median;
e average, WBES, BES, median;
e average, Hodges-Lehmann median, median.
All the discussed methods except averaging can be used for robust contextual denoising. Stan-

dard box mask 3 x 3 was used for the filter realization. Source Matlab codes are introduced in
the Figs. 8-10.



4 Denoising quality

Let X,U,V,Y € R™*" he matrices of original 2D image, its 2D context, denoised 2D context,
and denoised 2D image. Let I, C € R™*™ be an ideal image and its context. Then the quality of
contextual denoising can be studied in traditional sense as ASNR = SNR4 — SNR; or in context
domain as ASNR* = SNR3 — SNRy where

SNR; = 1010g10$(1_)1)
SNRy = 101og10$((_3)c)
SNR; = 101og10#((_3)c)
SNRy = 1010g10$(1_)1)

A set of nine nonlinear filters plus linear one for reference was used with 3 x 3 mask
and w = 0.4. The original image of coins was corrupted by gaussian noise, which is not too
optimistic for nonlinear filtering. The result of testing are collected in the Tab. 1. The filtering
approaches were tested without context (w — 07) and in context domain (w = 0.4). The general
observation is that traditional ASNR criterion decreases with context parameter w € (0, 1) but
the context like ASNR* increases with context parameter w € (0, %> So, the contextual filtering
is not better than traditional in ASNR but it is better in ASNR* (better for our eyes).

5 Conclusion

A new kind of nonlinear robust contextual filters was developed. Various filters were computed
with 3 x 3 mask for w = 0.4 using ASNR and ASNR*. The best one of them is WBES (Best
Easy Systematic Estimation on Walsh list) which is also acceptable in the case of gaussian noise.
All the calculations were made in the Matlab environment. Source codes are included.

Figure 1: Original image (w — 07) Figure 2: Pure context (w — 17)



Table 1: DENOISING QUALITY

Type Filter w— 0" w=04
3x3 ASNR | ASNR | ASNR*
LM average 9.439 9.420 | 10.978
L,R WBES 9.210 9.165 | 10.678
L trimmed 9.118 9.014 | 10.534
R | Hodges-Lehmann | 8.945 8.863 | 10.317
M Huber 8.664 8.411 9.902
L BES 8.538 8.290 9.744
L pivot halfsum 8.425 8.264 9.610
L quasimedian 8.115 7.756 9.177
M Tukey biweight 7.690 7.268 8.667
LM median 7.100 6.609 7.923

Figure 3: Compromise context (w = 0.4) Figure 4: Denoised image (WBES, w — 07)

Figure 5: Denoised context (WBES, w = 0.4) Figure 6: Image with denoised context
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function y=IMG2DFILTER(filtername,x,mask)
% General filter for 2D image
% y=IMG2DFILTER(filtername,x,mask) ;

hy oonn. output image matrix (m,n,h)

% filtername ... name of basic filter: result=filter(vector)
hx oo input image matrix (m,n)

% mask ... mask matrix (2*r+1,2*r+1,h)

hmoo.oo... image height

hn oo, image width

hh oo mask number

hr oo, mask radius

% Examples:

% x(m,n,h) without mask will produce y(1,1)

% x(1,n) with mask(1,n) will produce y(1,1)

% x(m,n,h) with mask(1,h) will produce y(m,n)

% x(m,n) with mask(2*r+1,2*r+1) will produce y(m,n)

% x(m,n) with mask(2*r+1,2*r+1,h) will produce y(m,n,h)

[m,n,h]=size(x);

if nargin==2 7 absence of mask
y=feval(filtername,x(:)); % processing of given function
return

end

[maskm,maskn,maskh]=size (mask) ;

if maskm==1 & maskn>=1 & maskh==1 & m==1 & n==maskn ), row mask and row image
listsize=sum(mask) ;
wlist=zeros(1l,listsize);
index=1;
for i=1:maskn
for j=1:mask(i)
wlist (index)=x(i);
index=index+1;
end
end
y=IMG2DFILTER(filtername,wlist) ;
return
end

y=zeros(m,n) ;

Figure 7: Nonlinear 2D filter




function [y,c,fc]=CONTEXT2D(x,w)
%CONTEXT2D 2D context filtering 3*3 with WBES filter
%Ly,c,fc]=CONTEXT2D(x,w) ;

%y .... result of filtering

%c .... context of source

hfc ... filtered context = context of result

%x .... original image as double matrix (m,n)
Jw .... weigth of context [0,1] 0.4 recommended

[n,m]=size(x);

mask=ones(3,3) ;

omel=(0:m-1) *2*pi/m;

ome2=(0:n-1)*2*pi/n;
[omegal,omega2]=meshgrid(omel,ome?2) ;
F=abs(1-w/2*(1+(cos(omegal)+cos(omega2))/2));
c=real (Afft2(££t2(x) .*F));
fc=IMG2DFILTER(’WBES’,c,mask) ;

F(F==0)=inf;

y=real (ifft2(£fft2(fc)./F));

Figure 8: Contextual 2D filter

function [y]=WBES(x)
xxx=x(:)’;
nn=size (xxx,2);
hoho=zeros (1,nn* (nn+1)/2) ;
k=1;
for i=1:nn
for j=i:mn
hoho (k) =(xxx (1) +xxx(j))/2;
k=k+1;
end
end
y=BES (hoho) ;

Figure 9: WBES statistics

function [y]=BES(x)

x=sort (x);

n=length(x);
y=(x(ceil(n/4))+x(floor((n+1)/2))+x(ceil ((n+1)/2))+x(floor ((3*n+4)/4)))/4;

Figure 10: BES statistics




