PEERT - BLOCKSET FOR PROCESSOR EXPERT "
AND MATLAB®/SIMULINK® INTEGRATION

R.Bartosinski’, P.Struzka’, L. Waszniowski®
'Institute of Information Theory and Automation, Czech Academy of Sciences
2UNIS, spol. s r.0., Brno
*Department of Control Engineering, Faculty of Electrical Engineering, CTU

Abstrakt:

This paper describes source code generation for embedded systems from
MATLAB®/Simulink® model by Real-Time Workshop® and the PEERT" library.
The PEERT" is briefly presented and generation of source code is shown on two
simple examples.

1 Introduction

An application can be created by hand or by tools which generate source code (It can be created
by combination of both ways, of course). Source code generators have many advantages. The main
advantage of source code generators for personal computer is rapid development of such application.
Other advantages of generated code for embedded application are better properties of code (smaller,
faster or with lower memory demands), transparency, errorless, safety. Important advantage is
compliance to required standards and easier and faster portability of application between different
platforms.

Programming with such tools is focused on visual design of an application and writing of
program functions which mostly use other libraries. Next simplifications and speed up of an
application programming are bringing with higher languages and other developing tools. One of these
tools can be MATLAB®/Simulink® with Real-Time Workshop” (RTW). An application can be
generated from a Simulink model with these tools. Simulink model determines functions in the
application (blocks) and data flow in the system (blocks interconnections), hence source code of full
application can be generated.

A RTW Embedded Coder is add-on product for use with Simulink and RTW. It generates code
that can be optimized for speed, memory usage and simplicity [5]. General diagram of embedded
software model is shown on figure 1. In most cases tools generate source code of application but
hardware abstraction layer (HAL) must be written by hand for each platform. Some tools generate
HAL, too. Unfortunately these tools generate HAL only for one target platform or for small limited
group of similar platforms (e.g. Embedded Target for Motorola HC12 or Embedded Target for TI
C6000 DSP). Another disadvantage of existing Simulink add-ons for source code generation is worst
support for simulation.

Application

RTOS

HAL

Figure 1: Typical model of embedded control unit software layers.
(HAL-Hardware abstraction layer, RTOS-Real-time operation system)

MATLAB/Simulink PEERT library, which is created in our SESA project, is based on
mentioned model of embedded software. The code of application layer is generated from the Simulink
model by the PEERT and the code of HAL is generated in Processor Expert’ (PE) tool. PE is
described in the next chapter. The PEERT library is described in chapter 3 and chapter 4 presents
library usage for simulation and code generation on simple example.

2 Processor Expert

PE is advanced, component oriented, open Rapid Application Development (RAD) environment
for embedded systems. The main task of PE is to manage CPU and other hardware resources and to
allow virtual prototyping and design. PE contains knowledge base of information about CPUs and its
on-chip peripherals. They are divided to separate units called Embedded Bean™ (bean). Beans
encapsulate functionality of basic elements of embedded systems like CPU core, CPU on-chip
peripherals, standalone peripherals, virtual devices, and pure software algorithms and change these
facilities to properties, methods, and events (like objects in OOP). Beans are well tested software and
that is why they can save months of work of the expert programmer [7].

" Processor, Expert [ledbar], version 2.96 for Freescale 56B00/E family DEMO
Fle Edit View Codegeneration Tooks Debug Options Window Help

Bean ltems Visbilty Help Peripheral Intialization > View Edit Help

Propetics | Methods | Events | Comment | ledbar |

T Bean name ADC 8 & Configurations
| /D converter ADCA lenca @ & Operaling System
| Shaiing Disabled o BC CPUs
Interupt service/event Disabled 0 ¥ @ CouseFaier
Bl A/D channels 1 -] B Beans
L5 Channelo B
| /D channel (pin] ANAD =]AjanAD
| /B channel [pin) signal
Mode select Single Ended o "
Queue
| A/D presoaler ADCA_ADCR2
| A/D resolution 125 |12tk =52 53%”"23::1 i
| Conversion time 1.700 s —lhioh: 1700 s AN
| Triager configuration wizard Click to run configurate > ocles
Internal trigger Disablzd 0| « BB Events.cizvent
| Vol ref. recovery fime 100 - < [ledbat_ttwciuser

A oz vmcdty 13 A - [letha_datacucer

| Power savings made Disabled o [t_OneStep.couser

| Number of conversions 1 & Benersted Modules

B Initialization € Edtemal Modules

t./ Enabled in it code. ves k| & Documentation
 Everts enabled n it % G PESL

Bl CPU clock/speed selection

P/ High speed mads. This bean enabled D This bean s ensbled
| Low speed mode This bean disabled D|This beanis disabled
| Slow speed mads This bean dissbled D[This beanis discbled

&l Simulink

t./ HighlrputLirit 1.0
| LowlnpuLimit 10

BASIC | ADVANCED | EXPERT SIMULINK | BeanLevel High Level Bean B\ PwWET PuwhB1 (none) Pulse Width Modulator B 1

£s: 0, hints: 0

Y ERROR: Errorin the bean selfing. More detais provided by Bean Inspector for this bean

Y

Saved Modfied Noinit

Figure 2: The main window of Processor Expert”.

Unlike common libraries, beans are implemented for all possible peripherals, with optimal code.
Methods are interfacing bean functionality to user's code. All enabled methods are generated into
appropriate bean modules during code generation process. Some beans allow handling the hardware or
software events related to the bean. User can specify the name on function invoked in the case of event
occurrence.

PE knows exactly the relation between allocated peripherals and selected beans. When the user
chooses a peripheral in the bean properties, PE proposes all the possible candidates but signals which
peripherals are allocated already and also signalizes peripherals that are not compatible with current
bean settings. In the case of an unrealizable allocation, an error is generated.

New beans can be created and edited by Bean Wizard. It provides a powerful interface for the
composition of new beans, and generates the bean files.

These tools can generate optimal code which can be compliant with common standards (e.g.
HIS or AUTOSAR standards for automotive software). The generated code from PE has a uniform
interface for all supported microcontrollers, and therefore the target platform can be changed without
changing model or tool.

3 PEERT library

The Processor Expert Embedded Real-time Target (PEERT) library integrates
MATLAB®/Simulink®” with Processor Expert . The library is divided into three parts. The first part
provides interconnection between Simulink and PE. It synchronizes an model and used blocks with the
corresponding PE project and beans. The next part of the library is a blockset with blocks, which are
corresponding with selected basic beans (Figure 3). The last part is RTW target based on Embedded
Real-Time Workshop target (ERT) for source code generation from model.

Interconnection between a Simulink model and a PE project is based on inter-process
communication through Microsoft Component Object Model (COM) [8]. PE contains COM server
which provides functions. They can be called from the library. The PE COM server allows registering
PE callback functions, as well. These callback functions are invoking in PE by events (e.g. save
project, remove bean, property changing) and the library can respond with the corresponding actions
in the model (e.g. save model, remove block, property changing). This mutual communication
guarantees synchronization between Simulink model and the corresponding PE project.

W =1

lw BEE]

il
D EE& RE -

& & & &

Bitio Bitsl0 Bytel0 ByteziQ

b b

L S -

b b
apture

Quadraturebecoder =

Ready

Ready | 100% Lacked

Figure 3: The PEERT " basic blockset for Simulink®.

The PEERT blockset contains two special blocks and other blocks which correspond to selected
PE beans (e.g. ADC, PWM, PortlO, Quadrature Decoder). The most important block in the PEERT is
Processor Expert block. It provides interconnection between the model and the PE project described
formerly. When a PE block is inserted to the model a new PE project is created. If the model contains
a PE block and it is saved, the PE project is saved to the same directory with the same name. The PE
block allows CPU selection and other settings in PE tool, as well.

Blocks in the blockset are divided to similar groups as in PE according to their function. These
blocks implement basic behavior and provide properties of represented beans — mostly hardware on-
chip peripherals which separate processor and its environment. Therefore the part of the model for
generation can be encapsulated to a subsystem. This concept allows simulation and generation from
one common model.

Each block from the PEERT blockset behaves in a model as selected method of the
corresponding PE bean. For example: ADC block makes measuring on input and value translating to
output in required format. All input and output ports of PEERT blocks have data type set to unsigned
integer implicitly. Majority of implemented blocks in the PEERT contain events (e.g. an event 'end of
measuring' in the ADC bean). They are represented as sources of function-call signals in PEERT
blocks. These signals can be used for event-driven systems and with the Stateflow tool.

Properties of blocks needed for a simulation and code generation are read from and written to
PE beans through COM connection, because PE beans use the same properties for optimal bean source
code generation. It allows to use PE Bean Inspector window for property settings, as well. This
concept takes advantage of PE knowledge base about entire created system and its dependency on the
other used beans/blocks.

Each block in the PEERT blockset provides only one selected function, but corresponding beans
provides more functions. Therefore the special block Method is in the PEERT library. This block
allows to use all other functions of PE beans in Simulink model. It allows to use beans which are not

in the PEERT blockset, as well. This block cannot be simulated, i.e. block is ignored in simulation,
and it can be disadvantage in some cases.

Simulink library, Processor Exper
PEERT, with embedded
other blocksets beans

C-MEX

\4 A 4

Simulink Processor
MODEL Sipel

PROJECT]

Generation

y

TLC

Generated source codes

Figure 4: Source code generation and simulation flow. Dotted lines mean automatic process.

Source code generation from a Simulink model and the corresponding PE project is shown on
figure 4. Before invoking generation a CPU bean must be added into the PE project and all beans must
have correctly set their properties. When RTW build process is invoking on the model, RTW
Embedded Coder creates RTW file with model description and then it uses Target Language Compiler
to creation source code of model blocks from description in TLC files, which must be provided with
each user block.

After invoking generation, the first step is creation of RTW file which describes model. The
next step is generation of block code from TLC files. These block source codes are combined
according to data flow in the model. Source codes of PEERT blocks are mainly calling of the
corresponding PE bean selected function. There is invoking generation of the used PE beans source
codes in the PE as the next step. The last step of the generation is automatic correction of generated
code — the generated PE init and loop functions are called from the RTW generated functions. If there
wasn't any error, generated code can be compiled and linked to target application.

4 Examples of system with PEERT" blocks

The first example shows how to use Processor Expert blockset to create a simple application.
The application is a simple LED bar. The used CPU has 12bit ADC and six bits with LEDs as output.
Behavior of application is described as follows. When the ADC value equals to zero, no LED will be
switched on. When the ADC value will increase, the LEDs will switch on in sequence. And if the
ADC value will be on maximum, all LEDs will be switched on.

LEDs are connected to two output ports controlled by two bytes. These bytes can be simply
obtained from one common byte. Therefore the application behavior can be described by the following
universal formula (all variables must have integer type).

y{l « (@ﬂ-l 1)

Where x is input value from ADC, y is output value, m is number of output's bits (number of LEDs)
and n is number of input's bits (ADC resolution).

The following list is simplified step-by-step guide with commentary:
e Create a new Simulink model.

e Add a Processor Expert block from the PE blockset to model. — It creates a new PE
project automatically.

e Add all other blocks from the PE blockset (They all have common specific design, as
shown on figure 4). - When some block from the PE blockset is added to model, the
corresponding PE bean is automatically added to the PE project.

D& = dh |

Pracessor Expert: The PE block is the main black. for inlegration simulink nodels
with the: Pracessor Expent application, It dlows change project
seftings and CPU. [Mé5K]
~
W Cenverter
o
=W Processor Expert Blockset

Intermupts

Measurement
Conwerter &
Irterrupts
Mzasurement +

Port 1j0)
g Hitkod

Pert 140

1% % [[% 1% %

Processor Expert

Ready

Figure 5: Processor Expert Blockset with selected Processor Expert block.

e Add other blocks from Simulink libraries as needed to model the application function.

e Add additional blocks to simulate and verify model. (After this step the model looks as
shown on figure 6.)

I ledbar_sim
Fle Edk %icw Simdation Fomnat Taols belp

DEdS »on o Namd -] D B B RER &

coubk

Sine Wave

Leokup Table

Data Typz Conversion

Constantl

Archmztic

Ready 10U% Fised-tep Jisaete

Figure 6: The initial model of LED bar application.

e Set blocks properties in windows which are invoked by double-click on blocks.
(Properties of blocks from PEERT blockset are set in Bean Inspector window in PE.)

“. Project panel - ledbar_sub.pe DC:AD
View Edit Help Bean ltemsVisibiity Help < Feripheral Initialization >
ledbar_subr I Propesties]Melhuds] Events | Comment |
& Configurations | Bean name ADC
& Dperating System | AJD converter ADCA |ADCA
Bl &= CPUs «*| Shating Disabled j2)|
7 @@ CpuS6FO367 Intenupt service/event Disabled B
[(= Bean: A/D channels 1 +-]
< € BisID:BisI0 Queue
o @ Bitsl01:EitslD +| &0 prescaler ADCA_ADCRZ
« (@ MadeiBaseF ateTimerlnk: Timerl nt +| A0 resolution 12 bits |12 bits
-« [E +| Conversion time 1.700 ps | high: 1.700 ps
= User Modules +| Trigger configuration wizard Click to run configurater » |
= Generated Modules Internal trigger Dizabled 12|
& Extemal Modules «| Walk. ref. recovery time 100
= Dacumentation «| Power up delay 13
2 PESL +*| Power savings mode Disabled 2
+| Number of conversions 1

Initialization
CPU clock/speed selection

[Simulink
t./ HighlnputLirit 1.0
| LawlnputLimit 4.0
Modified Modified Mo init BASIC ADVANCED E=PERT SIMULIME Bean Level: High Level Bean

Figure 7: Processor Expert project panel and bean inspector of ADC bean.

Sine Wave

uirtg 04
uint o5

e Set model configuration — type to ‘fixed-step’, solver to ‘discrete’ and fixed-step size to
0.2s (Fixed-step size is used as main loop sample rate in generated code.) and RTW
target to PEERT target. (Now the model can be simulated.)

e For source code generation from the model with blocks for simulation, blocks for
generation must be grouped into a subsystem.

e Double-click on the Processor Expert block invoke the PE project, where a CPU bean
must be added and set.

o If all beans are correctly set all properties building of the subsystem can be started. —
Set of output source codes is under model directory.

e Compile and link these source codes to obtain the application for target platform.

e Run the application on the target platform.

':E — ClEx
D& B2 T = [w - []x]
DSEH& & @ »on 00 [lemd <] BB REE®
,v-_|du o ouz uintd 0z :
i e s |UntE 0,

Ready

100% FizedstepDiscrete Ready 100% FixedStepDiscrete

Input

Time offzet. 0

Figure 9: Scope with signals of the simulated example system.

The example shows benefits of Simulink model and PE project integration. The resulted
application was created in very short time with guaranteed verification of algorithm (using simulation
in Simulink and drivers' code generated from PE). This approach means the application will get sooner
to the market with less effort and less time spent with development. The application remains portable
over several platforms (supported by PE).

The second example illustrates using of PEERT with the Stateflow tool (Figure 10). The
example is a water level alarm. The system has two inputs for buttons (‘On/Off* for switch on/switch
off and ‘Send’ for immediate measuring) and one analog input for a water level sensor. The buttons
are connected to interrupts. The system has two bit outputs (LED ‘On’ and LED ‘Warn’). When the
system is switched on, the ‘On’ LED shines and the water level is periodically measured (The period
of measuring is set in the TimerInt block/bean). When the water level is higher than limit, the ‘Warn’
LED is switched on. If the ‘Send’ button is pressed, the water level is immediately measured.

fo AEH)

). Stateflow {chart) waterlevel/Water, Level Control
File Edt Simulstion iew Tools Add Help ~

he:d& B @ » inf Nomal v O B [& 2t EEHE | hE BHE)> = EHSEH BRAO | W

OnStartStop

p ElE EE e e |8

k4

4

Critical_Level
% Term_SendStr{"Critical Levelll"}
% Term1_CRLF(),

Ready 100% FixsdStepDiscrete Ready

Figure 10: Model of the model of water level alarm.

Connection PE blocks (PE maps hardware resources like peripheral interrupts as block events.)
with Stateflow charts brings new potential to create complicated event-driven systems. Resulting
model can still be simulated.

5 Conclusions and future work

The paper briefly presents PEERT " blockset which integrates tools Processor Expert and
MATLAB®/Simulink®”/Real-Time Workshop”. The PEERT"" target is based on Embedded Real-Time
target and it generates source code for embedded systems with Processor Expert " supported CPU. The
generated code is consisted of two parts — hardware abstraction layer which is produced by PE and
application which is produced from a Simulink model with our blockset.

Integration of these tools is very useful, because entire source code of embedded application is
generated and developer needn’t write any part of code by hand. Another reason is errorless of code
and potential compliancy with the required standards. One of advantages over other source code
generators is capability to simulate system before generation. The PEERT " library is suitable to
generate event-driven application, as well.

The future work on the PEERT " library will be focused on expanding group of supported
blocks and creation special library for AUTOSAR automotive standard.

Acknowledge

The SESA project is supported by Academy of Sciences of the Czech Republic under project
No. 1ET400750406.

References

[1] MATLAB - External Interfaces. The MathWorks, Inc., www.mathworks.com, 2005.

[2] Simulink - Writing S-functions. The MathWorks, Inc., www.mathworks.com, 2005.

[3] Real-Time Workshop User’s Guide. The MathWorks, Inc., www.mathworks.com, 2005.

[4] Real-Time Workshop Target Language Compiler. The MathWorks, Inc.,
www.mathworks.com, 2005.

[5] Real-Time Workshop Embedded Coder User’s Guide. The MathWorks, Inc.,
www.mathworks.com, 2005.

[6] Real-Time Workshop Embedded Coder Developing Embedded Targets. The MathWorks, Inc.,
www.mathworks.com, 2005.

[7] Processor Expert help. UNIS, spol. s r.0., www.processorexpert.com, 2005.

[8] Microsoft Component Object Model. Microsoft Corporation, msdn.microsoft.com, 2005.

Roman Bartosinski

Department of Signal Processing,

Institute of Information Theory and Automation,

Czech Academy of Sciences,

Pod vodarenskou vezi 4, 18208 Praha 8, Czech Republic
Email: bartosr@utia.cz

WWWwW: www.utia.cz/ZS

Petr Struzka

UNIS, spol. s 1. 0.

Jundrovska 33, 62400 Brno, Czech Republic
WWW: WWW.UNis.Cz, WWw.processorexpert.com

Libor Waszniowski

Czech Technical University

Faculty of Electrical Engineering
Department of Control Engineering
Technicka 2, 166 27 Praha 6, Czech Republic
www: www.dce.felk.cvut.cz

