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Abstract 

The contribution presents shortly simulation of mass spectrum. This was necessary 

for debugging and testing of the mathematical algorithms for the processing of data 

from mass spectroscopy 

 

1 Introduction 
 Mass spectra represent very valuable information source which can be used at solving 

research and diagnostics problems in biology and experimental medicine. Many studies deal 

(for example [1], [2], [3], [4]) with the problem of statistic evaluation of mass spectra for the 

purposes of biology research. Long line of works uses these statistical procedures to the 

evaluation of mass spectra within the scope of biology research. 

Mass spectrum can be described as a dependence of relative ion percentage intensity 

on its effective mass. Relative ion percentage intensity is the intensity of ion related to the 

intensity of maximum ion in a given spectrum. It is denoted in literature by the character 

[%]I . Effective mass is the ratio of ion mass and its charge / [1]m z . This ratio is characteris-

tic for every particle. Mass spectrum can serve to perform an exact identification of a given 

particle under the condition of sufficient resolution of instrument and its precise calibration. 

 

2 Data 
Mass spectrometry generates (primary) data: single shots of mass spectral values 

( )ty x  for every tx  value, 1, ,t T= … , of abscise vector, i.e. for 1( , , )Tx x= …x , where T  is 

the number of abscises (or measured places), 410T ≈ . 

The data structure of an mass spectrum can be mathematically written in the form: 
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The less brief notation, that could be also used, is ( )t ty y x≡ , where 1, ,t T= … . The 

spectrum ( )y x  is normalized so that the maximum of the highest „peak“ gets the value 

max ( ) 100%=y x . The value of independent variable x  moves approximately within the inter-

val 5.0 ; 1.2 10 ;l u〈 〉 = 〈 〉 . The real 1-shot mass spectrum is displayed on the fig. 1. 
 

 

 

 

 

 

 

 

 

 

 



 

 

 

2999.0 10399.4 17799.8 25200.2 32600.6 40001.0

Mass (m/z)

0

4.7E+4

0

10

20

30

40

50

60

70

80

90

100

%
 I
n
te
n
s
it
y

Voyager Spec #1=>AdvBC(32,0.5,0.1)=>NF0.7[BP = 5731.3, 46846]

5731.72

12350.19

16937.64

6177.28

5938.14 8469.90

12556.00

5660.79
11458.07 17149.98

24705.13 29292.21

 

Figure 1: mass spectrum (Voyager - DE STR, Voyager instrument control panel version 

5.1, Data explorer version 4.5). 

 

3 Mathematical simulation of mass spectrum 
Let us suppose that the random sample is an experimental representation of a certain 

random quantity  ( )Y x  which represents considered spectrum. Argument x  gathers only the 

known values 1{ , , }Tx x x∈ … . The random quantity ( )Y x  can be expressed in the form 

 

 ( ) ( ) ( )= +Y x y x e x ,  1{ , , }Tx x x∈ … , (2) 

 

where ( )e x  consists of residual error after the processing of rough spectra, of random distur-

bances which represent e.g. biological variability, and of laboratory error of experiments e.g. 

in molecular biology etc. ( )y x  is the exact value. 

 

3.1 One peak simulation 
A peak is defined by its coordinates x  and y  of peak maximum, i.e. by the numbers 0x  

and 0y , and by the ratio of height and width of peak R  at half its height. 

The modified functional dependence of normal distribution probability density function 

in the form 
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can be used for peak simulation. To achieve the correct shape of the peak whose right side 

“tail” is always visibly higher then the left side “tail”, the peak is modeled with the help of 

normal distribution probability function so that the left side peak is expressed by the equation 

(3), and for the right side the equation (3) is modified so that σ  is multiplied by the empirical 
coefficient ζ . Hence the left peak side: 
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right peak side: 
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Further it has to hold that the ration of peak height and width in its half height is constant: 

 

 0 /( )R Ly z z R− = , (6) 

 

where L Rz z<  are related peak x -coordinates  in the half of its height. Thus, it applies 

0( ) ( ) / 2L L R Rf x z f x z y= = = = , whereas 0 ,max 0 ,max 0( ) ( )L Ry f x f x= = . 

 

 

3.1.1 Derivation of computational formulas for Lz  and Rz  

It can be easily derived from the relation (3) (or (4) and (5)) that the coordinate x  of 

peak maximum is identical to the position parameter µ : 0x µ≡ , thus 

 

 0 0( ) /L Lf x y K σ= =      a     0 0( ) /( )R Rf x y K ζσ= = . (7) 

 

E.g. for the left peak side it is valid 
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After the arrangement: 
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After arrangement of (9) we receive the quadratic equation 

 

 2 2 22 2 ln 2 0L Lz zµ µ σ− + − = , (10) 

 

and after its solving the result has form ( ) ln 4L Lz z σ µ σ= = − . Analogously, for the right 

peak side ( ) ln 4R Rz z ζσ µ ζσ= = + , where ζ  is the coefficient which enables to modify the 

shape of the right peak „tail“, 5ζ ≈ . 

Explicit relations for the calculation of constants LK  or RK  can be then expressed by 

the help of relations (7) (providing σ  is known, see below): 0LK y σ=  and 0RK y ζ σ= . 

 

3.1.2 The calculation of σ  parameter 

To calculate parameter σ  it is necessary to solve transcendental equation (e.g. by the 
method regula falsi) 
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for the unknown variable σ . The value of ( )Lz σ  and ( )Uz ζσ  can be calculated by means of 

relations from the last section. The iteration process is to be repeated so long until the value 

rσ  does not change in two successive iterations with an accuracy of required number of sig-

nificant figures d : 
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where r  is the order number of the final iteration. The solution should always find itself in 

the interval ;r L Rσ σ σ∈ 〈 〉 , where 1310Lσ −=  and 210Uσ = , for 0 ;µ≡ ∈ 〈 〉x l u , 

0 1%;100%y ∈ 〈 〉  and 310R ≈ . 

It is necessary to solve by means of regula falsi the modified transcendental equation with 

regard to big order difference between Lσ  and Rσ : 
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for unknown 10logr rσ σ′ =  and correspondent bounds 13Lσ ′ = −  and 2Rσ ′ = . 

 

           The result of these calculations is demonstrated in the picture 2. 

 

 

Figure 2: One peak simulation 

 

 

3.2 Spectrum simulation 
Ideal (un-noised by random disturbances) dependence of m-peaks simulated spectrum 

can be written in the explicit relation 
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where (.)f  are functions of particular peaks from § 3.1. X -coordinates of maximums 0, jx , 

1, ,j m= … , of all peaks, i.e. of proteins (and their fragments), are in all n  shots of spectra 



identical. They are as though natural constants. Their values are generated with the help of 

generators of random number of rectangular distribution in the interval of all measured range 

of x  spectra coordinates, i.e. in the interval 5.0 ; 1.2 10 ;〈 〉 = 〈 〉l u . The heights of all peaks 

0, jy , 1, ,j m= …  are generated with the help of generator of random number of rectangular 

distribution in the interval (1%;100%) .  

The heights of all peaks 
0, j
y , 1, ,j m= …  , represent in the framework of one n-shots mass 

spectrum as though constants. But at simulation of data (represented by more n-shots mass 

spectra) these heights of all peaks 
0, j
y , 1, ,j m= …  , are similarly random quantities noised by 

random disturbances which represent e.g. biological variability, laboratory error of experi-

ments e.g. in molecular biology etc. 

Ideal spectrum calculated according the described steps in various scales is demon-

strated in the pictures 2 and 3.  

 

  

 

Figure 3: Ideal spectrum simulation in the selected interval 

 

 

 

 

Figure 4: Ideal spectrum simulation in the whole interval 

 

4 Conclusion 
The purpose of our future work is to design the new methodology of mathematical-

statistical and fuzzy-logical identification and decision making in the domain of protein bio-

markers from mass spectra. The described simulation of mass spectrum is necessary for de-

bugging and testing of the mathematical algorithms for the processing of data from mass 

spectroscopy. For these purposes the Matlab environment is very proper tool. 
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