
PRINCIPAL COMPONENT ANALYSIS

IN IMAGE PROCESSING
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Abstract

Principal component analysis (PCA) is one of the statistical techniques fre-
quently used in signal processing to the data dimension reduction or to the
data decorrelation. Presented paper deals with two distinct applications of PCA
in image processing. The first application consists in the image colour reduction
while the three colour components are reduced into one containing a major part
of information. The second use of PCA takes advantage of eigenvectors prop-
erties for determination of selected object orientation. Various methods can be
used for previous object detection. Quality of image segmentation implies to
results of the following process of object orientation evaluation based on PCA as
well. Presented paper briefly introduces the PCA theory at first and continues
with its applications mentioned above. Results are documented for the selected
real pictures.

1 Introduction

Principal component analysis (Karhunen-Loeve or Hotelling transform) - PCA belongs to lin-
ear transforms based on the statistical techniques. This method provides a powerful tool for
data analysis and pattern recognition which is often used in signal and image processing [1, 2]
as a technique for data compression, data dimension reduction or their decorrelation as well.
There are various algorithms based on multivariate analysis or neural networks [3, 4] that can
perform PCA on a given data set. Presented paper introduces PCA as a possible tool in image
enhancement and analysis.

2 The PCA Theory

Principal component analysis in signal processing can be described as a transform of a given
set of n input vectors (variables) with the same length K formed in the n-dimensional vector
x = [x1,x2, ...xn]T into a vector y according to

y = A (x − mx) (1)
This point of view enables to form a simple formula (1) but it is necessary to keep in the mind
that each row of the vector x consists of K values belonging to one input. The vector mx in
Eq. (1) is the vector of mean values of all input variables defined by relation

mx = E{x} =
1
K

K∑

k=1

xk (2)

Matrix A in Eq. (1) is determined by the covariance matrix Cx. Rows in the A matrix
are formed from the eigenvectors e of Cx ordered according to corresponding eigenvalues in
descending order. The evaluation of the Cx matrix is possible according to relation

Cx = E{(x − mx)(x − mx)T} =
1
K

K∑

k=1

xkxT
k − mxmT

x (3)

As the vector x of input variables is n-dimensional it is obvious that the size of Cx is
n x n. The elements Cx(i, i) lying in its main diagonal are the variances

Cx(i, i) = E{(xi − mi)2} (4)



of x and the other values Cx(i, j) determine the covariance between input variables xi, xj.

Cx(i, j) = E{(xi − mi)(xj − mj)} (5)

between input variables xi, xj . The rows of A in Eq. (1) are orthonormal so the inversion of
PCA is possible according to relation

x = ATy + mx (6)

The kernel of PCA defined by Eq. (1) has some other interesting properties resulting from the
matrix theory which can be used in the signal and image processing to fulfil various goals as
mentioned below.

3 PCA Use for Image Compression

Data volume reduction is a common task in image processing. There is a huge amount of
algorithms [1, 2, 4] based on various principles leading to the image compression. Algorithms
based on the image colour reduction are mostly lossy but their results are still acceptable for
some applications. The image transformation from colour to the gray-level (intensity) image I
belongs to the most common algorithms. Its implementation is usually based on the weighted
sum of three colour components R, G, B according to relation

I = w1R + w2G + w3B (7)

The R, G and B matrices contain image colour components, the weights wi were deter-
mined with regards to the possibilities of human perception [2]. The PCA method provides an
alternative way to this method. The idea is based on Eq. (6) where the matrix A is replaced by
matrix Al in which only l largest (instead of n) eigenvalues are used for its forming. The vector
x̂ of reconstructed variables is then given by relation

x̂ = AT
k y + mx (8)

True-colour images of size MxN are usually saved in the three-dimensional matrix P with
size M x N x 3 which means that the information about intensity of colour components is
stored in the 3 given planes . The vector of input variables x in Eq. (1) can be formed as the
n=3-dimensional vector of each colour. Forming three 1-dimensional vectors x1,2,3 from each
plane P(M, N, i) with the length of M.N can be advantageous for better understanding and
programming. The covariance matrix Cx and corresponding matrix A are then evaluated and
the 3-dimensional reconstructed vector x̂ according to Eq. (8) can be called as the first, the
second and the third component of the given image. The matrix theory implies that the image
obtained by reconstruction with the matrix A1 (only the first - largest eigenvalue was used for
its definition) contains the majority of information so this image should have the maximum
contrast. This properties could be significant in the following image processing.

There is a selected real picture P and its R, G, B components in the Fig 1. Its three
reconstructed components obtained according to Eq. (8) for each eigenvalues are presented in
Fig. 2. The comparison of intensity images obtained from the original image as weighted colour
sum evaluated by Eq. (7) and as the first principal component is presented in Fig. 3. The
eigenvalues sorted in descending order belonging to the selected image are presented in Table 1.

Table 1: Eigenvalues of selected real image presented in Fig. 1

λ1 λ2 λ3

0.6103 0.3231 0.0418
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Figure 1: Original image and its three colour components
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Figure 2: PCA of a selected image
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Figure 3: Comparison of various method of image colour reduction. The gray-level image
evaluated as weighted sum of R,G,B colours (left) and the gray-level image counted on the base
of the PCA method (right)

4 PCA Use for Determination of Object Rotation

Properties of PCA can be used for determination of selected object orientation or its rotation,
too [2, 4]. Various method of image segmentation to object definition (like thresholding, edge
detection or others) must be used at first. Binary image containing object boundary or its area
in black (or white) pixels on the inverse background results from this process. After that two
vectors a and b containing the cartesian x and y coordinates of object’s pixels can be simply
formed. The vector x in the Eq. (1) is in this case a 2-dimensional vector consisting of a and
b respectively. The mean vector mx and the covariance matrix Cx are computed as well as its
eigenvector e. Its two elements - vectors e1 and e2 enable the evaluation of object rotation in
the cartesian axis or object rotation around the center given by mx. Fig. 4 illustrates the PCA
use for the determination of selected object orientation. The object boundary was detected at
first by means of LoG filter in the original gray-level image. The original has been rotated by a



given angle with the bilinear interpolation method use and the process of image segmentation
and PCA has been applied again. Resulted eigenvectors e1 and e2 are drawn in each binary
image, too and their orientation were compared with the rotation angle.
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Figure 4: Illustration of object orientation determination in the selected image

5 Conclusion

The presented paper dealt with two possible application of PCA in image processing. Other
application in this area can be studied as well. Our interest will be focussed on the PCA
method use for processing of biomedical signals and images. Further attention will be payed to
the method of Independent Component Analysis related to PCA, too.
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